HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization
نویسندگان
چکیده
In the field of evolutionary multi-criterion optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set approximation entirely dominates another one, then the indicator value of the dominant set will also be better. This property is of high interest and relevance for problems involving a large number of objective functions. However, the high computational effort required for hypervolume calculation has so far prevented the full exploitation of this indicator's potential; current hypervolume-based search algorithms are limited to problems with only a few objectives. This paper addresses this issue and proposes a fast search algorithm that uses Monte Carlo simulation to approximate the exact hypervolume values. The main idea is not that the actual indicator values are important, but rather that the rankings of solutions induced by the hypervolume indicator. In detail, we present HypE, a hypervolume estimation algorithm for multi-objective optimization, by which the accuracy of the estimates and the available computing resources can be traded off; thereby, not only do many-objective problems become feasible with hypervolume-based search, but also the runtime can be flexibly adapted. Moreover, we show how the same principle can be used to statistically compare the outcomes of different multi-objective optimizers with respect to the hypervolume--so far, statistical testing has been restricted to scenarios with few objectives. The experimental results indicate that HypE is highly effective for many-objective problems in comparison to existing multi-objective evolutionary algorithms. HypE is available for download at http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.
منابع مشابه
A Hypervolume-Based Optimizer for High-Dimensional Objective Spaces
In the field of evolutionary multiobjective optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance. This property is of high interest and relevance for multiobjective search involving a large number of objective functions. However, the high computational effort required for calculating the indicator v...
متن کاملOn the Use of Dynamic Reference Points in HypE
In evolutionary multiobjective optimization, hypervolume indicator is one of the most commonly-used performance metrics. To reduce its high computational costs in many objective optimization, Monte Carlo method is used in HypE (Hypervolume Estimation algorithm for multi-objective optimization) for approximating hypervolume values. However, the diversity preservation of HypE can be poor under in...
متن کاملA Parallel Version of SMS-EMOA for Many-Objective Optimization Problems
In the last decade, there has been a growing interest in multiobjective evolutionary algorithms that use performance indicators to guide the search. A simple and effective one is the S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based on the hypervolume indicator. Even though the maximization of the hypervolume is equivalent to achieving Pareto optimality, its c...
متن کاملHypervolume-Based Search for Multiobjective Optimization: Theory and Methods
xi Zusammenfassung xiii Statement of Contributions xv Acknowledgments xvii List of Symbols and Abbreviations xvii Introduction . Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . .. Multiobjective Problems . . . . . . . . . . . . . . . . . . . .. Selecting the Best Solutions . . . . . . . . . . . . . . . . . .. The Hypervolume Indicator . . . . . . . . . ...
متن کاملDirected Multiobjective Optimization Based on the Weighted Hypervolume Indicator
Recently, there has been a large interest in set-based evolutionary algorithms for multi objective optimization. They are based on the definition of indicators that characterize the quality of the current population while being compliant with the concept of Pareto-optimality. It has been shown that the hypervolume indicator, which measures the dominated volume in the objective space, enables th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolutionary computation
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2011